XStore
View Categories

EC-M11-BC-C1-LTE_V3 – USER GUIDE

4 min read

Programming  #

This guide applies to version 2 of the EC-M11-BC-C1-LTE module. The NORVI EC-M11-BC-C1-LTE has a mini USB port for serial connection with the SoC for programming. Any ESP32-supported programming IDE can be used to program the controller. Follow this guide to programming NORVI ESP32-based controllers with the Arduino IDE.

SoC: ESP32-WROOM32
Programming Port: USB UART

Wiring Digital Inputs, Analog inputs, and RS485 #

8-pin and 3-pin connectors and wire harness #

Pin Description #

8P MaleWire colorI/O Configuration
1WhiteDigital In A+
2BrownDigital In A-
3GreenAnalog In 1
4YellowAnalog In 2
5Gray12V+
6PinkGND
7Blue
8Red3.3V
3P MaleWire colorI/O Configuration
1BlueSolar Panel +
2BlackNot In Use
3BrownSolar Panel –

Digital Inputs #

Wiring Digital Inputs  #

The digital inputs of NORVI EC-M11-BC-C1-LTE can be configured as both a sink and a source connection. The inverse of the digital input polar should be supplied to the common terminal.

Programming Digital Inputs  #

Reading the relevant GPIO of the ESP32 gives the value of the digital input. When the inputs are in the OFF state, the GPIO goes HIGH, and when the inputs are in the ON state, the GPIO goes LOW. Refer to the GPIO allocation table in the datasheet for the digital input GPIO.

#define INPUT1 35
void setup() { 
   Serial.begin(115200); 
   Serial.println("Device Starting"); 
   pinMode(INPUT1, INPUT); 
} 
void loop() { 
   Serial.print(digitalRead(INPUT1));
   Serial.println(""); 
   delay(500); 
}

0-10 V Analog Input #

Reading Analog Input #

Analog InterruptGPIO21

Reading the relevant I2C address of the ADC gives the value of the analog input.

Programming Analog Inputs  #

#include <Adafruit_ADS1X15.h>
Adafruit_ADS1115 ads1;
String adcString[8];

void setup() {
  Serial.begin(115200);
  ads1.begin();
  ads1.setGain(GAIN_ONE);
  Serial.println("Initialized analog inputs");
}
void loop() {
  Serial.print("Battery Voltage: ");
  Serial.println(readBattery());
  delay(800);
  printanalog();
  delay(800);
}

void loop() {
  int16_t adc0, adc1, adc2, adc3;
  adc0 = ads1.readADC_SingleEnded(0);
  adc1 = ads1.readADC_SingleEnded(1);

  Serial.println("-----------------------------------------------------------");
  Serial.print("AIN1: "); 
  Serial.print(adc0); 
  Serial.println("  ");
  Serial.print("AIN2: "); 
  Serial.print(adc1); 
  Serial.println("  ");
}

12V Power Output #

EnableGPIO13

Programming power output #

#include <Adafruit_ADS1015.h>
Adafruit_ADS1115 ads1(0x49);

void setup() {
  Serial.begin(115200);
  pinMode(13, OUTPUT); // 12V boosted output enable
  ads1.begin();
  ads1.setGain(GAIN_ONE);
  Serial.println("Initialized 12V battery power control");
}

void loop() {
  digitalWrite(13, HIGH); // Enable 12V battery power
  delay(800);
}

void disable12VBatteryPower() {
  digitalWrite(13, LOW); // Disable 12V battery power
}

LTE1 Communication #

Model of LTE ModemSIM7000-E
FCC ID2AJYU-SIM7000
TAC86615402
RXD GPIO25
TXDGPIO26
RESETGPIO32
POWERGPIO22
GPIO Connections of LTE1 Communication

LTE2 Communication #

Model of LTE ModemSIM7500
FCC ID2AQ9M-SIM7500
TAC86147503
RXDGPIO25
TXDGPIO26
RESETGPIO32
POWERGPIO22
GPIO Connections of LTE2 Communication

Programming LTE Communication #

#define MODEM_RESET 32
#define MODEM_FLIGHT 22
#define MODEM_RX 26
#define MODEM_TX 25
long timer1;

void setup() {           // initialize both serial ports:
  Serial.begin(115200);
  pinMode(MODEM_FLIGHT , OUTPUT);       // FLIGHT MODE ENABLE
  pinMode(MODEM_RESET , OUTPUT);       // MODEM RESET PIN
  digitalWrite(MODEM_FLIGHT, HIGH);   // FLIGHT MODE 
  MODEM_RESET_CYC();
  delay(2000);
  Serial2.begin(115200, SERIAL_8N1, MODEM_RX, MODEM_TX);
  Serial.println("SIM AT ATART >>>>>>>>>>>>>>");
  delay(2000);
  Serial2.println("AT");
  delay(2000);
  Serial2.println("AT+CPIN?");
  delay(2000);
  Serial2.println("AT+CNMP?");
}

void loop() {
  delay(3000);
  timer1 = millis();
  Serial2.println("AT");
  while(millis()<timer1+10000){
    while (Serial2.available()) {
    int inByte = Serial2.read();
    Serial.write(inByte);
    }
  }
  timer1 = millis();
  Serial2.println("AT+CPIN?");
  while(millis()<timer1+10000){
    while (Serial2.available()) {
    int inByte = Serial2.read();
    Serial.write(inByte);
    }
  }
  Serial.println("AT SCAN DONE");         // read from port 0, send to port 1:
  while (Serial.available()) {
    int inByte = Serial.read();
    Serial2.write(inByte);
  }
  while (Serial2.available()) {
    int inByte = Serial2.read();
    Serial.write(inByte);
  }
}
void MODEM_RESET_CYC() {
  digitalWrite(MODEM_RESET,HIGH );
  delay(1000);
  digitalWrite(MODEM_RESET,LOW );
  delay(1000);
  digitalWrite(MODEM_RESET, HIGH);
}

Solar Input #

Solar Powered ModelCN3083 
Maximum Charge Current 600mA 
Maximum Voltage 6V 
Input Voltage monitor (V_SENSE2) ADS1115 – 0x49 – AIN2

Battery Input #

Battery Type103040 Lithium polymer battery
Nominal Capacity 1200mAh  
Nominal Voltage3.75V
Overcharge4.2V
Over-discharge Cutoff Voltage3V

Programming Solar and Battery #

#include <Adafruit_SSD1306.h>
#include <Adafruit_ADS1X15.h>
Adafruit_ADS1115 ads1;
int analog_value = 0;

void setup() {
  Serial.begin(115200);// put your setup code here, to run once:
  Wire.begin(16,17);
  if (!ads1.begin(0x49)) {
    Serial.println("Failed to initialize ADS 1 .");
    while (1);
  }
}

void loop() {
  int16_t adc0, adc1, adc2, adc3;
  adc0 = ads1.readADC_SingleEnded(0);
  adc1 = ads1.readADC_SingleEnded(1);
  adc2 = ads1.readADC_SingleEnded(2);
  adc3 = ads1.readADC_SingleEnded(3);
  Serial.println("-----------------------------------------------------------");
  Serial.print("AIN1: "); 
  Serial.print(adc0); 
  Serial.println("  ");
  Serial.print("AIN2: "); 
  Serial.print(adc1); 
  Serial.println("  ");
  Serial.print("SOLAR: "); 
  Serial.print(adc2); 
  Serial.println("  ");
  Serial.print("AIN4: "); 
  Serial.print(adc3); 
  Serial.println("  ");   
}